Tuber physiology and properties of starch from tubers of transgenic potato plants with altered plastidic adenylate transporter activity.

نویسندگان

  • P Geigenberger
  • C Stamme
  • J Tjaden
  • A Schulz
  • P W Quick
  • T Betsche
  • H J Kersting
  • H E Neuhaus
چکیده

We showed recently that antisense plants with decreased activity of the plastidic ATP/ADP-transporter protein exhibit drastically reduced levels of starch and a decreased amylose/amylopectin ratio, whereas sense plants with increased activity of the transporter possessed more starch than wild-type plants and an increased amylose/amylopectin ratio. In this paper we investigate the effect of altered plastidic ATP/ADP-transporter protein expression on primary metabolism and granule morphology in more detail. Tuber tissues from antisense and sense plants exhibited substantially increased respiratory activity compared with the wild type. Tubers from antisense plants contained markedly increased levels of free sugars, UDP-Glc, and hexose phosphates, whereas phosphoenolpyruvate, isocitrate, ATP, ADP, AMP, UTP, UDP, and inorganic pyrophosphate levels were slightly decreased. In contrast, tubers from sense plants revealed a slight increase in adenine and uridine nucleotides and in the levels of inorganic pyrophosphate, whereas no significant changes in the levels of soluble sugars and metabolites were observed. Antisense tubers contained 50% reduced levels of ADP-Glc, whereas sense tubers contained up to 2-fold increased levels of this sole precursor for starch biosynthesis. Microscopic examination of starch grain morphology revealed that the size of starch grains from antisense tubers was substantially smaller (50%) compared with the wild type. The large starch grains from sense tubers appeared of a more angular morphology, which differed to the more ellipsoid shape of wild type grains. The results suggest a close interaction between plastidial adenylate transport and starch biosynthesis, indicating that ADP-Glc pyrophosphorylase is ATP-limited in vivo and that changes in ADP-Glc concentration determine starch yield, as well as granule morphology. Possible factors linking starch synthesis and respiration are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of the plastidic ATP/ADP transporter protein primes potato tubers for augmented elicitation of defense responses and enhances their resistance against Erwinia carotovora.

Tubers of transgenic potato (Solanum tuberosum) plants with decreased activity of the plastidic ATP/ADP transporter AATP1 display reduced levels of starch, modified tuber morphology, and altered concentrations of primary metabolites. Here, we demonstrate that the spontaneous production of hydrogen peroxide, the endogenous content of salicylic acid, and the levels of mRNAs of various defense-rel...

متن کامل

A possible role for pyrophosphate in the coordination of cytosolic and plastidial carbon metabolism within the potato tuber.

The early stages of tuber development are characterized by cell division, high metabolic activity, and the predominance of invertase as the sucrose (Suc) cleaving activity. However, during the subsequent phase of starch accumulation the cleavage of Suc occurs primarily by the action of Suc synthase. The mechanism that is responsible for this switch in Suc cleaving activities is currently unknow...

متن کامل

Altering trehalose-6-phosphate content in transgenic potato tubers affects tuber growth and alters responsiveness to hormones during sprouting.

Trehalose-6-phosphate (T6P) is a signaling metabolite that regulates carbon metabolism, developmental processes, and growth in plants. In Arabidopsis (Arabidopsis thaliana), T6P signaling is, at least in part, mediated through inhibition of the SNF1-related protein kinase SnRK1. To investigate the role of T6P signaling in a heterotrophic, starch-accumulating storage organ, transgenic potato (So...

متن کامل

The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development.

The sucrose (Suc) H(+)-cotransporter StSUT1 from potato (Solanum tuberosum), which is essential for long-distance transport of Suc and assumed to play a role in phloem loading in mature leaves, was found to be expressed in sink tubers. To answer the question of whether SUT1 serves a function in phloem unloading in tubers, the promoter was fused to gusA and expression was analyzed in transgenic ...

متن کامل

Tissue Specific Expression of Human Calcitonin Gene in Potato Tubers by an Organ Specific Promoter

To increase the production level of heterologous proteins in plants, strategies such as choice of strongerpromoters, optimization of codon usage and specific localization of foreign proteins are of major concern.Calcitonin (CT), a 32 amino acid polypeptide is a powerful and specific inhibitor of bone resorption and isused to treat several human diseases. Calcitonin activity is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 125 4  شماره 

صفحات  -

تاریخ انتشار 2001